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VOLTERRA’S SOLUTION OF THE W’AVE EQUATION AS APPLIED TO THREE-DIMENSIONAL
SUPERSONIC AIRFOIL PROBLEMS

By Mxx. A. HELSLET, ILiRV~RD LOMAX;and ARTEWR L. JONES

SIJMlfARY

.4 .w~face integral is dewloped which yields solutions oj the
Jirwarized partial differential equation for supersoni< j?ow.
These solutions satkjy boundary conditions arising in wing
theory. Particular applications of this general method are
made, using acceleration. potentials, to ~at surfaces and to
uniformly loaded lifting surfacm. Rectangular and trapezoidal
plan forms are considered along with triangular forms adapt-
able to swept-forward and swept-back wings. The case of the
triangular plan form in sideslip is also included. Emphasis is
placed on the systematic application of the method to the hfiing
.su~faces considered and on the possibility of jurther application.

INTRODUCTION

The increased emphasis on extending theoretical knowledge
in supersonic wing analysis has led to a systematic in-i-esti-
gation of the various mathematical methods available for
treating the basic dit7erentiaI equations. In the present
report ad~antage has been taken of the direct anaIogy -which
e.sists between the linearized partial cliileren.tiaI equation
for supersonic flow in three dimensions and the &wo-chmen-
sional -wave equation of mathematical physics. AS a result
of this correspondence, soIutions which ha~e been giwn for
the wave equation are shown to be applicable to the type of
boundary co~dit ion encountered in King problems. The
first section of the report is de-roted to the de~elopment. of
the solution for the potential of the supersonic flow HeId.
The application of this expression to a number of examples
in supersonic Iifting-surfcwe theory illustrates the usefulness
of such a method of attack. In the fist. of these exampIes.
the loacIings o-rer the given plan forms are assumed to be
uniform. The results obtained for such cases appear at
first to be somewhat academic since undesirable twist and
camber occur over portions of the resultant. surfaces. From
the uniformly Ioacled surfaces, how-ever, it is possible to
develop surfaces having arbitrary load distributions. im-
posing the condition that the finaI lifting surface shall be a
flat pIate Ieads to the soIution of an integraI equation in
every case co~sidered. The results obtained, for some of
the pIari forms considered, ha-re been developed eke-where
but not always with the unification of method attainecl here.
ATew-configurations are ako incIuded among the examples
glvem The methods shown are applicable to a large class of
unsolved problems of immediate interest.
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LIST OF IMPORTANT SYMBOLS

loed velocity of sound
b2

()aspect” ‘atio 3

span of wing
chord of -wing

.()
lift coefficient &

&
loacl clistribution funckion
constant. value of discontinuity in q over uni-

forndy Ioaded lifting surface
incomplete elbptic integrcil of second kind with

argument u ancl moclulus L
compIete elliptic integraIs of second kind with

mocIuIus k ~nc~ 1’1 —?:2,respect iYeIy
incomplete el.liptic int ebval of first kincl with

argument u ancl modulus k
functions introduced in equations (89] and (90)
complete eIliptic i~tegrals of first kind with

moduIus /: and 1;1—kz, respect ivelj-
lift of wing
free-stream Mach number
direction cosines of normak to surface S
static pressure on lower side of lifting surface
static pressure on upper sicIe of lifting surface
point at which wdue of Q is to be determined

free-stream dynamic pressure
(i’”’””’)

surface enclosing volume ~“
area of wing
perturbation velocities in direction of A“, 1“,

and Z axes, respectively
~okme
free-stream Yelocity
Cartesian coordinates
transformed coorchnates (See equation (3J.)

Jacobi’s elliptic functions of argument u and
modulus k

angle of attack, radians
~/Jfoz— 1

lfach forecone from point P: (A”, 1“, Z)
seti~ert ex angle of triangular wing
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pressure differe~tial (pl–pU)
angle measured from X axis
conical flow coordinate (See equations (27 )

and (30) .)
P tan 6
Jacobi’s theta function
cyIinder of infinitesimal radius enclosing axis

of forecone r
surf ace at which stream enters indu cccl fielcl of

wing
angle of sicfeslip

(
Id ach angle of the free stream P= arc sin&

)
direction cosines of conormal v to surface ~______
incomplete elliptic integral of third kind with

argument u, parameter y, and modulus k
density in the free stream
wrialies representing either the acceleration

potential, the velocity potential, or any of
the three perturbation. velocity components

surface on which boundary conditions are givexi
velocity potential .

acceleration potential

value of acceleration potential on upper side
of lifting surface

value of acceleration potential on lower side of
lifting surface

1–<

7YIEORY

LINEARIZATION Oi? DIFFERENTIAL EQUATION FOR COMPRESSIBLE FLOW

The quasi-linear (i. e.,, linear in the derivates of highest
order) differential equation for the velocity-potential @ in
the case of compressible fluid flow in three dimensions, is
expressible in the form

where a represents the local velocity of sound in the medium
and Cartesian co-ordinates are used. Under the assump-
tions of small pert urbatiori theory (references I and .2),
this equation is modifiecl so that it is Hnear in form and
consequently more amenable to mathematical analysis.
J)enoting by the variable Cleither the acceleration potential,
the velocity potential, or any of the three perturbation
velocity components, the linearized expression for equation
(l) is

(1–fifo2)Q..+Qtiu+ Qzz=o (2)

where .Wfois the hlach number of the free stream ancl thus
equal to the ratio of free-stream velocity and the correspond-
ing speed of sound.

By means of the affine transformation

X=2

1’= /+(1 –Llf,’)y

1

(3)

z= \/* (1–317) 2

equation (2) can be put ir+.o standard forms. Thus, when
Ik&< 1 the plus signs are chosen in the. mdimk of equat ion (3)
and equation (2) becomes

Qxx+Qyy+Qzz=o (4)

whiIe for” 31.>1 the minus signs are wed and, m a conse-
quence,

Qxx—flyy— Q====o (5)

For the case of subsonic fiow (.ZWO<1) the linearized ec~uation
is thereby reduced to the ;vell-known Laplaee. equation in
three dimensions. Similarly, in supersonic flow (.lfO> 1}
equation (2) is again reduced to classical wc wiLh [he re-
placement. of the space coordinate X by a time variabk T
to give the two-dimensional wave equ~tion- of mathen~aticaI
physics. The linearization of the general differential equa-
tion for compressible fluid flow therefore makes available, in
both subsonic and supersonic stucIies, the results of the ex-
tensive work carried out in previous rcsemch on problems
related to equations (4) and (5),

APPLICATION OF GREEN’S THEOREM TO LINEARIZED COhl PRESSIIiLE
FLOW EQUATION

hleth&k of soIution for partial differential equations of
the type considered here may he cIassifird into two principal
categories: methods which express the soIutions in terms of
orthogonal functions and methods Tvhich are based on the
use of Green’s theorem. Yolterra’s soIution, discllssions of
which may be found in references 3i 41 and 51 fipplies tlw
latte~ approach to the. two-dimensional wave equation arid,
as a consequence, his results may be ndaptd tv the study of
supersonic flow and specific solutions of cquat ion (5).

If the functional notation

L(Q) = $2==– %,Y- fizz

is used, the anaIytic form of Green’s theorelufor cquntion (5),
relating a voIume integral over the region 17 to a surface
integraI over the surface S enclosing V, may k written in
the form.

SH
‘ [d(o) –QL(U)]W= –

JJ
(.uD.Q– QDnu)dS’

where a, Q are any two functions whichj togethw with their
first and second derivatives are finite and single valued
throughout the region considered, and

where nl, nz, n’ ire direction cosines of inward normals to the
surface. S.

The expression for ~JJ is, of course, a directional deriva-
tive. The corresponding term appearing in Green’s theorem
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for Laplace’s clifTerential equation (incompressible fluid flow)
is precisely the directional derivative along the normal to the
surface S. TIM analogy between the two terms prompts the
introduction of the so-calIed conormal to S with direction
cosines q, w V3defined as

vl=—nl, vz=n2, V3=n3

The geometrical connection between the normal and the co-
normal is indicated in figure I; the angles between the lines
and the 1“ and Z axes remai~ respectively equal, while the
angles between the lines and the X asis are supplementary.
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FICrRE 1,—The geometric reIation.sbeiween notmd ad conorma] to surface .S,

It follows, in particular, that if the surface S is the XI” plane
the two Iines are coincident; if S is a cone with semivertex
angIe equaI to 45° and axis paraIIel to the X“ axis, the co-
norrnaI at any point lies loDg the surfs-ee S.

It is now possible to w-rite

and the surface-rolume reIation becomes

If Q and a are chosen so as to satisfy equation (5) through-
out the region V] then equation (7) reduces to the form

(8)

The form of equation (8) is a direct anaIogue to rewdts ob-
tainable for functions satisfying Laplace’s equation. (See,
e. g., reference 6, p. 46.) The use of the conormal produces
this symbolic equivalence.

TOLTRRE.L’S >lETEfOD FOR TWO-DIMEWIOX.4L ‘W.4$-E EQEMTIO>-

~onsider no-w a surface r which, for the purposes of this
report, may be thought of as being coincident with the /X~
plane and pmaIIel to the air flow which is in the clirection
of the positive X axis. Two such surfaces are represent ed
by the darkened areas in figures 2(a) and 2(b). It is desired
to determine the value of Q at the point ~: (X, ~, ~ from a
know-ledge of the boundai-y conditions given on r. The
soIution to such a problem is immediately suggested by
equation (8) since that equation reqmi-resonly the knowledge

m
of Q and ~ along a surface enclosing a given voIume, together

with the know-IecIge of some particular solution u to the ~vave
equation -ralid everywhere within the enclosed ~olume.
Further, it is physically evident that contributions to the
value of Q at P can come only from points within the forwone
-with vertex at P and also within the enveIope of the after-
cones with -vertices at the foremos~ disturbance points of r.
Referring to figure 2(a), this would mean the voIume bounded
by the forecone l_ and the wedge A sprin=tig from the leading
edge of ~; and in figure 2 {b), the ~oh]me bounded by the
forecone I’ and the aftercone k with rertex at the apex of
the surface r. Since for the boundary-value problems in-
~olved the surface r remains in the Xl” pIane, equation (8)
must be applied to all three surfaces Xl I’, and r.
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FIG CPLE2.—Mach foremne from point P (~, Y, Z) intersecting surbw r. (a) Rectangular
plan form.
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Since three is no way of cleterrnining o and b+ along r the

~ttempteci solu~ion will be especially difficult unless the
particular solution u and its derivative with respect to the
cormrmal vanish everywhere on r. But this is in fact the
essential part of Volterm’s method of solution. Thus the
proper ch;iee of r is

x-xl
a=arc Cosh~/(IT-y J2+(z-zJ2

(This relation, incidentally, is the indefinite integraI of the
fundamental soIution representing a supersonic source in
three dimensions [(X—X1) ‘– ( Y- YJ ‘– (Z– Z,)~]-1/2.) The
value of u is equal to zero on the fore.cone I’ since the equa-
tion of this cone is

(X-X,)’- (Y– Y,)’– (2–2,)2=0

and further, siuce the conormaI is always directed along the

forecone, ~ is the gradient of CTalong r and is also. zero.

Equation (8) provides cm equality for the distribution of

Q and a; over A and r, provided Q and a s~tisfy equation (5)

throughout the enclosed vokme mentioned. However, al-
though u satisfies equation (5) everywhere in the enclosed
volume opposite ~ from F (under the .X~ plane in fig. 2),
aIong the line (J7— Y1)2+ (Z.— 21)2= O (above the XT pIane
in fig 2) a is infinite and does not satisfy the assumptions
made in esta.blishing Green’s theorem, If this line is ex-
cluded, however, by means of a cyIincler K of radius e, with
axis lying along the Iine (F-——YJ2+ (Z– 2,)’= O, then
equation (8) may be appliecl to the region outsicle Kand yet
within the space bcmncled by A, ~, anti I’. In fact equation
(8) can then lx written ..$>2$

(9)

where. n is the portion of r bounding the region of integration.

If R= +’(Y– Y,)’+ (2–2,)2 and cyIil&ical coordinates e, t,

and (X—--XI) are used, an eIement of area on the cylinder K is

cL9= – cd+d(A’– XJ, while

?kT ZkT (<Y—X,)
& ‘m”= –;7(3”-A’1)’–,’

.

so that

lim
SK6-)0 . x “E-”a’”=?%w+e’

lim
e+0 :%arccos’’(-)d”’’(x-x’)=-SS

=–27r
s-

: Q({, Y, Z)C& (lo)

If this resuIt is applied to equation (9), one gets

and, after c]ifferent iat ing ecluation (1 1} with. respc’cl. to .~r,

.Q(X,Y,z) =$ & rs(

Jy WJ ~~
b- av.)

(12)
rl+.x

PROCEDURE FOR LIFT1h”G SURFACES Ah’D SYMMETRIC V’lNGS

V7hen the region considered is that, bounded by the surface
r, r, and k~j the portion of k on the opposite side of r from
the point P, then c is finite throughout @ region and, as it
direct co&equcnce of equation (9),

o=–;T&7
Ss ( )

!2.’g—~ ~; ds (13)
,,+?,’

where Q’ is the value of the potentiaI function on the side of
7 opposite P and V’ is in the opposite direetiom to v on r.
Adding equations (12) and (13),

The degratiom over r are now in a form which may I.M
interpreted directly in terms of known conditiolls oser bodies
with given load or symmetrical section. ‘1’he integration
over A a.n.dk! can be disposed of by discussing t.l~eLWCImscs
shown ~ figure 2. When Q is identified with tl~e velocity
POtentiz~ its value can be sho~rn to be zero 011 ~ an~~~’
regardless of whether the leading eclge is swept ahead of or
behind the lfach cone, When Q represents acc.ekration
potential or any of the perturbation velocity components, a
discontinuity exists in the vduc of Q for leading edges swept.
ahead of the TlacLcone as in figure 2 (a). Analysis of this
case, however, reveals that, for all wing problems the inte-
gration over k just cancels the integration over ~’. When
the Ieacling eclge is swept behind thu iftich cone as in tigurc
2 (b) the value of Q is again zero. Thus in any cmc thvre
results the fundamental equation:

[14)

The counterpar~ of equation (14) for incompressible fluid flow
is welI known. (See, e. g., p. 60refcrencw 6.)

Un.cler the particular conditions for which

d-l M’
Z=–am- (15)
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over the surface T equation (14) becomes

Q(X, 1’, z) = + &.
SS

~O_Q,) KG ~~
\.. .

&
(16)

.T 71

The restrictions imposed in equation (15) can be gken
physical significance after the functions Q, Q’, and tbe ~wface
T have been giren specific meanings. Consider first the
case where T is a lifting surface. Ob~iously the normal
inducec[ veIoeit.y 7.0is a continuous function across
!2 tind Q’ are velocity potentials associated with the
surface,

T. If
lifting

7/?(:.1”,17, 2) =’2L?’(X, 17,2) =%= —y

and equation (15) is satisfied. If i? denotes acceleration po-
tential or perturbation velocity u, it is necessary to show that
on the lifting surface

au ax’
%=—v

The relation holds, how-ever, for since w(A”,IT, Z) =w’(X,Y,Z)
along r, it follow-s that

au~_ au]’
ax-ax’

and from the condition of irrotationality it is possible to ex-
press the gradient of UTin the X direction as the gradient of
u normal to the surface, that is. in the directions of v and v’.

Equation (16) is thus applicable directly to Iifting-sui-face
theory in conjunction with either veIocity or acce~eration
potentials. .AppIication can ako be made to the determina-
tion of pressure distribution over the surface of a symmetric
airfoil at zero angle of attack. h this so-calIed nonlifting
case the function Q is set equal to the induced veIocity W,

T is the pIane. of symmetry of the airfoiI, and equ%tion (16)
can be used to establish the boundary conditions, protided
equation (15) is satisfied. For this to be so bw/dv must
equaI —&u’/&’. But conditions of symmetry give w(Z)=
—w’(-Z) from which the equaIity is seen to hoId.

RETRAXSFORMATIOS OF COORDIX.&TES

Since

x–x,~=arc Cosh _
\“(r— YJ~+ (Z—zy

direct substitution into equation (16) yields

Q(x, Y, z) =

la-fr — (Q—Q,’) (X–X,) [Z— Z,) d.1’,d~l
YT ax, .,1 [(Y– Yy+(z-z,)’] J(x-xJ’-(Y- YJ’–(Z–Z,)’

This solution applies to equation (5) and, in order to relate
problems to the linearized equation (2), it is necessary to
use the transformation of equations (3). If the point .Xl,
3“,, Z, transforms to the point x,, y,, z,, it follows that

Q (q y, 2) =

.4PPLICATIONS

GENERAL REM.5.RKS

Applications in lifting-surface theory may proceed along
t~o possible lines depending upon the boundary conditions
specif3ed. In what is usuaIIy referred to as the direct
probIem, or probIem of the fist kind, the Ioading is given
o~er the wing and the potential function of the flow field
fieId is calculated. From the potential function the shape
of the aerodynamic surface supporting this load can be
found relatively easily. The inrerse problem, or problem
of the second kincI, concerns itseIf with the determination of
the loading o-i-er a -wing surface from a knowledge of the
surface shape. In the folIowing sections both of these cases
will be considered. The direct. problem Kill be discussed
for various pIan forms, the anaIysis proceeding directly from
the expression for the potential function given in equatiori
(17). The detaded dkcussio~ of the direct- probIem is justi-
fied by its application to the iuverse probIem where the Ioad-
ing o-rer flat plates -with rectangular, trapezoidal, and tri-
anbdar plari forms is determined. The mathematics of the
irmerse problem is less straightforward sbce the analysis
involves the introduction of elemental lifting surfaces -with
constant loading and the soIution of an integral equation
for each plan form.

UMF’ORMLY LOADED LIFTISG SURFACES IN SUPERSONIC mOW

Infinite span wing.-k order to determ”ne the induced
velocities ODthe surface of an infinite span, uniformly loaded,
supersonic lifting surface by means of the methods derived
in the preceding section, it is convenient to set !2 equal to
the acceleration potential q (reference 2). The lifting surface
is, in this case, a surface of discontinuity for the function p
and corresponds to the fmrface r, in equation (I?). The
discontinuity in the due of p between ihe
surface is equal to

upper and lower

(%-PI) =: (2,-P.)

where

PO density in the free stream
p ~ stat ic pressure on lower surface
pU static pressure on upper surface

It follows thzt for the uniformdy loaded wing in the pIane
Z1= O the discontinuity in the acceleration potential is a
constant, say C70. From equation (17) . .
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%/

x
FIGURE3,—Re~ions of intefuatlon for hEuite span unswept wing,

A sketch of the airfoil plan form is givenin figure 3 and
two possible regions of integration are indicatecl. In all
cases theintegrtition with respect to y is pcwformecl between
tile Iimits atwhic.h thcrctdiccd

~~y—gl) ~+ 22]

vanishes while the integration with respect to x depends. upon
the manner in which the forcwone of the point P intersects
the discontinuity surface. Denoting the chord length of the
airfoiI hy c, the following rektions are obtained:

p= o when x+/3z<o

P=+; ~Owhen OSXFOZSC (19)

q=O when c<x+/3z

(When double signs are usecl, the upper sign refers always
to the case where z> O ancl the Iower sign corresponds to
2<0.)

The vaIue of the acceleration potential is thus seen to be
zero at all points in space except for those points lying within
the region between the wedges extending b}~cli from the
Ieaciing ftncl trailing edges of the airfoil.

It is now possible to determrne. the induced. velocities
associated with the acceleration potential just obtained.
Since, in linww perttlrbztion theory (reference 2),

where u, o, w are respectively the z, y, z components of the
perturbation velocities, it follows that

‘U=+o q

(2])

The induced velocities for the infinite span airfoil IWI1t

immediately from equations (19) and (21). If the uppcir
sign of a ckmble sign is: again referred to the ~> O cascI, tho
results may be written m the form .

(7,
‘=*2T’0

since the vertical induced velocities are const flntj it ioi~o~vs
that the supersonic airfoil of infinit(~ aspect rri[io and u[li-
form load distribution is a flat plate. The relations bctwern
this Ioacling ancl angIe of attack will be considered 18t.rr.

Lifting surface with rectangular plan form, The COIUl]](It[c
cliscussion of the supersonic lifting ,surfacw with uniforn)
loading ~ncl rectzmgulm pkm form is kngthcne[l consideral)ly
by the fact that in ccdcukt.ing the acce]cralion pot~’n&i~I at
the point P with coordinates z, y, z it is ncwcssary to distin-
guish between several regions in space in which the lx~itl~
may be located. These regions arise from considcvwt ion of
the manner in which the forecone of the lmin~. F cuts the
surface of cliscontinuity. The value of p cm bc fcmml wi~h
cipproxirnntely eclual flcihty in each of these regions l)uL,
since this paper is concerned primarily Itith cflccts on ~ll[?
surftice of the zirfoil, the solutions for pertinent regions only
will be given here.

Figure 4 shows the rectangular plan form EL’ T’ T togr~her
with the coordinate system t,o be usecI. The dimensions of
the. wing are chosen so tll.at the Jlach cones extending I]mk
from the leading edge will not int erscct within the bound arics
of the wing. This restriction, which is not nccmsmy b uf
mere]y simplifies the analysis, implies that if fi is thc spatl
of & w-ing and c the chord Ieng[h, tht~n

(23)

stream and equal to the semiyertex angles of the 31aeh colws.
The loacling over the rectangultir pIan form is to be uniforl~~

i 1

so the expression pl,—pl is set. equal to CUfor —$ ~<~1<~ 6

ancl O<rl<c. Tl~e acceleration potential, exprrssed as n
functiolo~x, y, 2, is thus obtainable from equation (17) and
the Iimits of int egrat ion must be (1.etcrmine(i from t.hc position
of P. From reasons of symrne(ry, only the portion of spacr
for which y> O need be considered. Once the accckration
potential hti~been calculated, equations (21) may be used
to ca]culatti incluced velocities. The resul [s (of such calcula-
tions are gi~en and the same convention for double signs is
useci.

Region 1]: Behind the kticling-edge weclge, ahra{l of tl~c
trailing-edge wed me~ , and bounded lnhmdly by the y= Q
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FIGCEE+,–Lifting mrb.ck ~ith Mach mms and COOrdiJMteWst+?mfi:mW@J3.’wk Bb fo~.

phme and the llach cone from the leading-edge tip. The
results in this region correspond to results obtained for the
intkite span airfoiI. Thus

‘u= + c# T“o

(24)

Region 12: Within the lfach cone from the leading-edge
tip, outside the lhch cone from the traihg-edge tip, rmcl
forward of the trailing-edge w-edge. 13enoting the integr~d
in equation (17) by the symbol 1, the exprti~sion for p, rhen

y<-$b, is

(25)

-where

.&pplicat ion of equations (21), after integrating either equa-

tion (25) or its companion expression when y>+ b, yields the

results:

c
.[

+-are tan
‘(’-i’)~.—E_

27iTTl

L 1z\/H’[(Y-;by+.*]”

“=’:;’o(’-:j+’’ [(y’-’’[(y-iby+z’] ‘2”

c“

-{

–$+-fl arc tan
P(v;b)

“=2 Z=I’0 -

J=i(’-+ ‘Y+’] ‘

t

& a partiaI check of the expression for ~ in equations (26),
it can be seen that in the limit as z approaches zero the value
of ~ agrees with the resi-dt given in equation (24) on the
-wing while the ~aIue is zero off the wing.

The values of vertical induced velocity in the plane “z= 0
are of particukc interest since from a knowIedge of the
distribution of w the surface shape and local angle of attack
corresponding to the. imposed Ioad distribution can be
determined. The expressions for w for uniform loading
mill be partimdarly usefuI l%ter when the load distribution is
modified in order to obtain airfoils with specitied iuduced
velocities. Introducing the notation

,=(’+)”
x

the following results are obtained for the area covered by
the tip cone:

(28)

and for – 1<T<O, (r<c)

titer integratio~ of these two expressions, the expIicit value
of vertical incluced ~elocit.y throughout the entire region is
found to be

Equations (28) and (29) indicate that the flow OTW the
tip portion of the airfoil is of the type referred to as “conical
flow.” For this type of flow the values of induced dommash:
aerodynamic loading, etc.: are functions merely of the angle q.
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Busemann (reference 7), Stewart (reference 8), and Lager-
strom (reference 9) have developed analyses for certain plan
forms which are pos~ulated on the existence of this type of
solution. In all cases for -which the flow field is conical the
prob~ern is effectively two-dimensional, Such a. simplifica-
tion reduces the analysis in this report to a consideration of
a single integrtd equation while in the references just men-
tioned complex variable theory c~n be_applied directly.

Tip of swept-forward Iifting surface,—Consider the tlp of
a swept-forward supersonic Iifting surface with uniform
loading (fig, 5), the angle & between the leading edge ancl the
~ axis and the angle 81 bet~~reenthe traiIing edge and the z
axis both being less than the free-stream lfach angle p.

lMO
t

o

t{ z

FIGUEE5.—Tip of swept Iormwd lifting surface With traces of Mach cones, coordinate system,
and regions defined for equations (32) and (34J.

In carrying out the integrations it is necessary to distinguish
between the type in which the _tip boundaries are behind
the h!lach cones and the type in which the tip boundaries are
ahead. The analyses of these two cases are of equivalent
complexity, however, and can be handled with equal facility
by the methods outlined. For aII surfaces whose leading
edges form an apex, only the ci.se where the wing boundaries
are behind the klach cone wiII be considered. A Cart.e.sian
coordinate system is chosen as shown so that the origin

lies a~ the apex, the positive x axis extending downstream,
the y axis extending IateraIIy, and ~he.s axis being directed
normal to the plane of tile plan form and t,o the free-strrfi m
direction. The equatiofis of the sicles of the lifting surface
are

y=()

and

y= –(2–C) tan 31=—$(x–c)

The calculation of p (r, y, z) again n~us~ be clividcd intg
cases ‘depending upon the location of the ~loint T: (z, y, 2).
In the results listed below are included the explici t ex~jrcssions
for P (r, y, 2); the induced velocities, however, are given
only in the pkmc z= O, as the int~’gration to obtain a general
expression is difficult. The ~-elocitics in thu. z= O phme,
which are sufficient for the purpose of [his investigation,
can be oht ained from a simpler integration since, for tho
integral invoIved,

This simplification was used in th~ analysis of most of the
lifting surfaces investigated. As before, it is fissumcd that,
the discontinuity in P is equaI to CO. ~loreoverj thu ex-
pressions. for w%=o are given in terms of thu variddes q
and u where

(30)

In this manner the soIution is shown to be conical in the
region .~iead of the traiIing-tip Llach cone (fig. 5). For
points behind this Llac% cone the flow is noi conical lm~ a
function of both q and ~.

Region 1,: Inside the leading-tip l~ach cum and ahead of
the trailing-tip Ylach cone. Integration of equation (17)
yields the result

(31)

*

(32)
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Region 12: Inside both tip Ilach cones. The solution in
this region is simplified through use of the fact. that for linear
difTerentiaI equations any algebraic sum of solutions -wiIIbe
another solution of the equation. Since the differential
equation for the acceleration potentiaI is linear, this property
can be applied to obtain a soIution for the region lZ b-y sub-
tracting from the expressions given for region IL correspond-
ing expressions in which the -i-ariabIe 31replaces & and (z-c)
replaces z. Thus

(3’4)

Lifting surface with trapezoidal plan form,—The linear
property of the dfierential equation may be used to ad~an-
tage in determining the flor about a trapezoidal lifting sur-
face viith uniform lift distribution, since the bouncIary
conditions within the plan form of the airfoil are obviously
s~tisfled when the acceleration potentiaI for a triangular
tip is subtracted from the potential for the rectangukir
surface.

Suppose (fig. 6) the angle of rake of the trapezoid is F&and
thak & is less than the Slach angle p. The acceleration
potential wilI be identical, over the central portion of the
surface, to that. for the lifting surface of ti-te aspect ratio.
Over the parts of the surface -which are blanketed by the tip
Ilach cones the flow ti, however, be modified. Because
of symmetry the determination of this modification need
ordy- be carried out on one side of the figure.

If the coordinate axes are chosen as shown in figure 6, the
IateraI boundary of the lifting surface is

y=—z tan 50=—9:

It has been shown that both the rectangular pIan form and the
triangular pIan form e~erience conical-type flow- over the
region m-ithin the tip llach cones. Thus, the ~ariable q
defined in equation (30) may be used.

Region 11: inside the 31ach cone originating at the leading-
edge tip, outside the llach cone from the trailing-edge tip,
for-ward of the traihg-eclge -wedge, and to the left of the
g= O plane.

For –l<q<O:

c’J3
[

—$+arc tan —
,1

‘~ # ,&z~ ~ arc cosh ~–

(35)

I
!/

,’
,’

/’
.’

\

x

~Gmii 6.—Trapemida1 IWng surface !Yitb traces of Mach cones, cwrdinate s~~km, snd
regions defined for &qwtion (35).

Swept-back lifting surface.—.% another example of the
way in which the linearity of the differential equation may be
ut,dized to obtain further solutions, the induced vertical
velocities for a sviep t-back wing w-U be determined for the
case in which the leading and trailing edqes lie behind their
respective lfach cones (~g. 7). The-bou~daries of the plan
form are given by the equations

of the trailing-edge 2@hThe flow -idI be conicaI ahead
cone where the induced velocities can be expressed in terms
of the -rariabIe ~. Behind the trailing-edge llach cone the
flow will not be conicaI but wiII be expressible in terms of the

-rariables ~ and W= 1— ~.
.

Consider first the r&ion of conical flow. In order to
determine w..O for a given -raIue of q it is possibIe to con-
sider separately the induced effects produced by each half of
the surface. But in the region ahead of the trailing-edge
31ach cone, the induced velocities arising from one half of. __
the surface are. given by the formula for a simiIar region on
the swept-forward surface. For reasons of symmetry the
results for the entire swept-back lifting surface need only be
given for -raIues of ~ within the Iimits – l<T<O.

SS31Y26-—5O-38
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..
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F1OUI+E7.—Swept-baek Iiftlng surface with traces of Mach cones, coordinate s~stem, and
regions defined for equations (36)and (37).

In the region where the flow is not conical -the solution wilI
be built up of a combination of soIutions obtained from the
regions of conical flow.

Region 11: Inside the leading-edge k{~ch cone, outside the
trailing-edge kfach cone, and to the left of the y= O plane.
For –l<q<o

(36)

COB

[

—

—2arc cosh’+
~11— eo*arc ~05h (2– 6,2–T’)=—.

27TV0 00 Iql Oo I(@o’–n’) I 1

Region -7,: Inside both hfach cones and to the left of the
y= O plane. The solution in this region can be produced by
subtracting from the value of. wZ.O given for region 11 the
value of W.=. given for the same region ex$ept that in the
latter case & is replaced by 8, and z by (x–c). Thus,

cob
[

wz=o=2~v; *O

\/l— %02~rc co5h (2”- f?&?7’)
= arc cosh $ +———— ———.

00 I(W-T2)1 +
g J1—012

arc cosh ~ ——
(2–6,’)6Y–7

I l’+
arc cosh

(q’– @l’&l’) II
(37)

Although the uniformly loaded lifting surface was the only
prescribed loading anaIyzed, it should be noted that the
basic integration Ieading to a solution of this type of prob-
lem (equation (17)) is in no way restricted to a uniform load.
Arbitrary loadings that may or may not be anaIytic functions
of x and y can be specified and the probIem therefo~e becomes

one of technique in integration, The solutions for t.ho uni-
formly Ioadecl surfaces, however, are part.icuIarly useful. By
methods of superposition these solutions can be used to ob-
tain the surface loacling for specified plan forms (tlw inverso
problem) as will be illustrated in the foIIowing section.

LOAD DISTRIBUTIONS ON FLAT-PLATE LIFTING SURFACES IN Supersonic
FLOW

Infinite span wing, —Since the vertical induced veloci~y is
constant. for the supersonic airfoiI of infinite aspecct ratio
(equatio~ (22)) and uniform load, it foHows that the airfoil
is a flat plate. This property distinguishes the infinite aspect
ratio problem from all other plan forms considered, for tho
Ioad distribution must be modified in the lat te.r cases so that
twist and camber are removed from the wing to obtain a flat
plate.

Denoting the amgle of attack of the airfoil by a,

Wz.o c,
‘=– Vo /.!l.’– 1

-—~ 3
Moreovex,

l’?rPu=Po(%– PJ=Poco

and, setting

it follows trhat

131iminating Co betyeen equations (38) and (39),

(38)

(3!3)

(40)

The resulL given in equation (4o) is the well-known .kckerc~
expression developed in reference 10. The derivation hem
follows the approach of I?randtl (relerence 2j.

Rectangular pIan form.—Since the verticaI induced velocity
for the uniformly Ioacle.d supersonic airfoil of rectangular
plan form is not constant o~er the portion of the wing
covered by the tip Xfach conesl it is necessary to modify tho
load distribution within this region in orcler to get. a flat. plate.
The determination of the required load distribution will bc
shown to depend on the solution of an integral equation and
subsequent probIems dealing w-ith other plan forms wiH1
from a mathematical standpoint., be similar in form.

The rect angukir phm form wiIl be thought of as being buil~
of superimposed trapezoidal lifting surfaces with variable
angles of rake (fig. 8), each trapezoidal surface having a uni-
form load distribution but \\-ithloading allowed to vary witl~
the variable rake angle 6.

Since the flo~\Tover the. part of the airfoil within the l~ach
cone is cotical, it, is possible to express W,-. as a function of
v where

.] x

Setting

~ tan 6=0



T“OLTERR.4’SSOLUTIOA’OF TATE EQUATION AS APPLIED TO TEREE-DIMEXS1ONAL SUPERSONIC AIRFOIL PROBLEMS ~~~

and using equation (35)

where C’(6) = q.— p 1 for the singIe trapezoidal surface \;ith
rake a.@e &

,,-
,.’

/’
,’~. ‘..

,“ ‘.
‘..

‘.
.“’,. ‘.

‘.
, .

f
x

Fr{;rm s.—R wtangukr plan form built of .wperimpcwd trapezoid Iifting surfaces with
~ariable rake.

The soIution of the problem depends on the determination
of a function C’ (d) -which, when substituted in equation (41),
will yield a constant due of WZ.O(V); that is, a ~alue of W...
independent. of the -rariabIe ~. lrnpos~~ the condition that

the problem is resolved into one of soIving the equation

By means of the notation

the integral equation is written in the form

w-here the singularity- in the integrand necessitates the use
of the infinitesiruaI e. The evacuation of the derivative
thus Ieads to the expression

[s—7—s J

1
()=lim C’(%) ~ d6+ _v~, C’ (0)~$ d@–

-i 0 -1

‘. k

FIGLZS Q.–Region of integration showiag Iine of singularity for equation (14).

It can be shown from equation (35) that, if C“ (8) is a con-
tinuous function,

Hence

and the soIution of this equation is

C’(o = \,&
where Cl is a constant to be determined
from equation (43) into equation (41)

(42)

(43)

later. substituting

(44)

The region of integration in the TIOplane for the double
integral of equation (44) is shown as the cross-hatched area
of figure 9, a singdarit~ in the integrand occurring along the
Iine 0= – ~,. Rewritbg the equation and re-rersing the
order of integration in the double integraI,

[s–q-,do

—J

1 de
o (q,+@) ~’e(l–o) + ++ (ql+ 6) I’@(l —q 1

The bracketed expression in this equation can be shown to
vanish for all values of ql between zero and — 1 so that,
finally,

–c,@

1

1 – C,fk
““= %vo h arc sin ~G = —2r!

(4$)
o

Since the trapezoidal lifting surfaces are superimposed,
the Ioading C’(6) over the resultant rectangular plan form
satisfies the reIation
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Imposing the conditionthat (7(0)= O at @= O, it follows

C’(8)= 2CI arc sin >@

ADVISORY COMMITTEE FOR AERONAUTICS

that

(46)

!l%is equation gives the incrern.e-nl-aIchange of acceleration
potential between the upper and lower lifting surface of the
rectanguhw wing. As a result the increment in pressure is

—

Expressing the pressure difference in nondimensional terms,

p~—% Ap 4C1_ .= .._ arc sin @
; povo’ q ‘7”2

(47)

The constant C, may be eliminatedbet.~veenequations(45)
and (47) and as u consequence

Since the angle of attack a of the airfoil is by definition
WZ.Q

equal Lo — — ~the final expression for the loading, in coeffi-V,
cient form, over the outer portions of the rectangukir wing is

(48)

The general approach used to obtain this result is simiIar to
that used ‘by Schlichting (reference 11). The error in
Schlichting’s final result has been noted by Busemann and
o trhers.

Lift coefficient CL for an arbitrary wing is clefined by the
relation

(49)

where
-L= total lift of the wing
dS= eferncnt of area on the wiug
SO= total area of wing

For the rectangular wing the values of Ap/q over the tip
and center sections are given by equations (48) and (40).
.& a result of this integration

c,=?(+)
(50)

where A is the aspect ratio and by definition equal to the
ratJio of the square of the span and the wing area. As a
final conclusion the lift-curve. slope of the wing is

2’=$(’-+2) (51)

Trapezoid pIan form.—The results given in equtitions
(48) and (51) are capzble of generalization to the case of the
fiat plzte havirlg trapezoidzd pkm form and with rake angle
& less than the Ivlach angle of the st.remn. For such a
configuration the airfoiI is again bIanketed in part by the
tip hlach cones and the loading in this outer section of the

‘ airfoiI rnusi be adjusted propedy to give constant imluc.cd
vertical velocity. Superposition of trapezoidal Iifting sur-
faces with loadings varying \\ithrake angle 6 can againbe

used and the conical nature of the flow employed. Setting

T= mix
9=13 tan a

t?o=~ tan 60

equation (35) Ieacls to the expression

where C’(0) = yu—p; for the single trapezoid surface wi tli
rake angle 6.

The analysis in this case follows along lines dircct_Iy mlalo-
aous to that used for the rectangulm surface. For the
~resent configuration the loading f&ction - “ “
posed trapezoids is given by the relation

for the superlm=

(53)

and the integration to obt~in w,.O can
give, as a final result,

The loading C(6) over the resultant trapezoicial plan form
can be found from the relation

dC(t?) c,
T= ~~(e–eo) (l–d) ‘-“ -

From the boundmy condition that C’(O)= O at
follows that

,—

and

0=00 it

(55)

(55) and

gives 8s

Elimination of C, bf’Lween equations (54) and
introduction of angle of attack a for —w..o/~”o
aerodynamic. loading over the portion of the airfoiI withi[]
the tip llach cones the expression

(56)

Figure 10__incIicates the variation of the loa(ling over thr tip
section of the trapezoid. The variable (Bia) (Afllq) is
plotted tt~ainst /3 tan J for /3 tan do equal to 0, 0.3, artcl 0.6.
The curve for I? tan &= O corresponds to the cusc of the
rectangular wing and sho~vs results in agreement with wlIia-
tion (48).
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By means of equation (49) together with equations (56)
and (40) the lift. coefficient of the trapezoidal wing is expres-
sible in the form

Introducing the aspect ratio .4 of the wing -where

A= b .
(c 1–~ tan 30
.. )

one gets for lifi coefficient the relation

From equation (57),

(5s)

dC= .
lnfigurell, fS~

1
ISplotted as a function of #@ for 8.=0 –)

f2

and 1. The curve for O.= O agrees with resuIts given by
equation (51) for the rectanguhm wing. AII curves are
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FIGCRE 11.—~arhtion of reduwd Iifc-curve S1OW@~ with reduced aspect ratio @.4for

vario~. trapezoidal pIan forms.

terminated at values of .48 for which the tip Lfach cones
intersect on the traiIing edge of the wing.

Triangular plan form, type l.—The pressure distribution
over triangular lifting surfaces with constant induced _rertic&
-i-eIocities will be developed in the foIIowing thee sections..
These plan forms are indicated in figures 12(a), 12(b), and
12(c] and shall be denoted, respectively, as types 1, 2, and 3.
Types 1 and 2 are actuaIIy special cases of type 3; nameIy,
the cases -where one leading edge is parallel to the free stream,
and where both leading edges make equal angIes with the
stream direction. Type 3 includes any plan form which has
leading edges swept behind the J1ach cone bu~ on opposite
sides of an axis drawn through the vertex of the triangle
and parallel to the free stream; and, further, has a trailing
edge such that the llach cones from either tip do not cross
the surface of the wing. The principal reason for considering
the three types separately is to show the manner in which
the spanwise Ioading appears in the solution of the probIem.
In types 1 and 2 the proper load distribution is found readiIy
while the tinal type requires a more careful treatment..

In order to determine the Ioad distribution over the airfoiI
it will be con~enien t to use a dif7erent iaI element over which
the Ioading is uniform. The eIements may then be summed
and the distribution of Ioading adjusted so that the induced
-rerticaI ~elo~it.y at any point on the totaI lifting surface is
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FIGURE12.—TrianguIar flat plate l;fting surfaces. (a) Type 1. (b) Type2. (c) Type3.

constant, For the triangular plan forms it is possible to
assume that conical flow exists and the mdysis may be
carried out using the angular coorclinat.cs that have alreacly
been introduced.

Figure 13 shows the elemental lifting surface to be used.
The sides of the element extend back from. the tip of the
!Vfach cone; making angles 6 and 8+A6 with the positive
z axis or free-stream direction. Corresponding to previous
notation, the relations O= B tan 6 and O+ A19=/3 tan (8+A8)
are used. The vertical velocity induced by the eIement. of
surface may be denoted by Aw and it follows that

Aw=w(t?+A8, q) –w(O, ~)
.

I

I

I

IMa

-9
/, ‘.,, ‘.,/,.’ ‘..,. . ..,,,. ‘.

‘.,., . .,,’ . .
.. ‘.

,.’ ‘.,
. ‘.,,.’,/ ‘.. .

x
FIULIKE13.–l?lcmmt8l lifting surface of constimt load.

where w(6,q)and ‘uJ(O-1- A@,q) are the velocities induced by the
triangular-tip surfaces lvith uniform loading and with tip
angles equal to ~ and 3+ A3, respectively. Applying ~
limiting process,

It follows that W,=. for the resuItant liftilg surface will be
evaluated by an integration }vith respect to 6’. If bu*,_o/bo
can be expressed in the form of an intugral with rcspec~ to
V, the relation for wg=o will then be similar to those given
in equations (41) and (52) for the previous. plan forms an{d
the expect ation will be that. the function f(0) can b.c de Lcr-
mined to give constant. induced vertical veIocity.

The method of a.tta{:k just outlined is postul~hxl on t.hc
existence of an integral expression for b~~2.0/be. SUch fin
expression is, however, obtainable directly from the integrals
in equation (32). Integrating these rclntions by parts,
after fbxst differentiating by 0, leads one to the formulas:

‘For -l<V<O ‘
,

I

.%=%[$zi+bm%i=d ‘“)

If the elements are summed over the type 1 triangular
wing, induced vertica.I velocity is

and from this criterion tlw function C(O) will be dchmnined.
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Thus, using methods similar to those introduced in the
development. of equation (42),

(64)

The general solution of this equation is

where Cl and Cz are constants. Since, ho_we~er, the Kutta-
Joukowski condition requires that loading vanish along the
edge .9= O, it follows that C2= O ancl the required loading
takes the form

(65)

II equation (65) is substituted into equation (63), vertical
induced velocity can be calmdated from the expression

The region of integration in the T,, OpIane for the double
integral of ekuation (66) is shown in figure 14 for the case in
which —60<~<0. .4 singularity in the integra.nd of the
doubIe integral exists aIong the line @+v,=O. Re-rersing
the order of integration, equation (66) may be rewritten as

%rowz.o= _ ,1 —f

‘J

ee do
J

–% dql
/3c, o (19+q) \’e(eo—e)— –1 q*\’1—7j’?

The singIe integral in equation (67) has a singularity at
8= —v since – 00<~<0 and T therefore lies inside the region

e=-qi
‘.

‘..
.

-1 T

FKXTLE lL-Region of integration showing line of singularity for efmatkms (66) and (7S).

of integration. A corresponding singularity occurs in the
second of the double integraIs at 0= —ql. Consider, there-
fore, the integraI

The indethite integraI is

1
in —qeO+600+ 2qe—21t(—q60—qq 6(00–e)

>f—qeo—qz e+q-

so that the definite integral is

The vaIue of this expression is 0 and equation (67) therefore
becomes

Since, ~ t~s region of integration, — l<q<— Ooit follow-s
that

and

(70)

by meansThe integraI of equation (TO) can be transformed
of pureIy algebraic substitutions into a form that iuteb~ates
immediately into complete elliptic integraIs of the first and
second kind. Ho-we~er, in the consideration of the type 3
plan form it NW be necessary to resort to other methods of
transformation, so that a more uniform approach,_ employing
Jacobian eIliptic functions, will be used throughout. (See
reference 12.]

The quartic uncler the radical in equation (70] is fl.rst re-
duced to an expression of the t-ype appearing in elliptic in-
tegrals of canonical form. This is accomplished by succes-
sive application of the transformations

/++-1s k
‘1=— 1+.s

— and .S=F

where k and 1 are chosen so as to destroy the odd powe~, of
the variable. By means of these transformations, induced
velocity becomes
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where
~=l—>w

00

The integration of equation (71) will be performed after
first considering two parts such that w2.0= WI+ WZwhere

/3c,
“=2T7°

and

(’–kz)~z +

J

()
k–; tdt

y“k(eo-k) (1–kz) I (1 –W) ~/(1–t’) (k2t2– 1)

j?(?, (1–k’)k’

J

i (l–tz)dt
‘2= –2V, #c(@o-k)(1–p) ~ (1–fw} 4(1–P) (w-l)

This sepamhion is prompted by the fact that the integraI for
WI is expressible in terms of elementary functions after the
simple transformation t2= 2, The results of such an integra-
tion lead to a value that is zero at the lower limit and infinite
at- the upper limit. Hcwever, an inspection of the original
integral in equation (70) shows that W,.. is finite so the
infinity obtained for WImust be canceIed by a corresponding
infinity of equal magnitude in W2. T~\e actual proof of this
statement necessitates, of course, treating the combined
expressions as an indeterminate form where the upper limits

of the inte.graIs for WI and WZare repIaced by ‘+ e and the
k

limit is taken as e approaches zero.
Introduce now in the integration of w, Jacobian elliptic

functions and set

t=sn(u, k)=snu

so that

dt=cnu dnu du

The expression for WZbecomes

(1 –k’)k’i

J

K+fK’ ~nzu

mu du
‘2=% >l~k) (1—IPj K

where K and K’ are the complete eIIiptic integrals of the
first kind with respective moduli k and k’= %11– kz. Inte-
grating and combining with wI, one has

Wz=o=WI+

where E’(u) is the incomplete elliptic integral of the second
kind. After substitution of the limits, induced vertical
vdocity is

/3(7, (1–k~E’
-- (72)wz=o= ‘2~ .Jk(@o-k) (1–k’)

where E! is the complete elliptic integral of the second kind
with modulus k’= ~11—k2. Equation (72) can lm further
simplified by writing k in terms of L90so that

/9(7,d2(1+ J1 –002)~,
W,.(I= –~ 6’02

l—%/i-eo2
where the modulus of E’ is ~~1—k2 and k= ~

o

(73)

For the Ioading in question

J–

e
Pi—Pu=!%($%l— Pl) =PIG —Oo–f?

and

By means of equat;on (73) the constant-Cl maybe eIiminaf,w_i
and

k
,.’‘,
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FIGURE16,–LowI distribution over triauguk plan furms of typo 1.

(74)
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Figure 15 shows the vmiation of ~ ~ with 13tan 8 for dues

of B tan & equaI to 0.3, 0.6, and 0.9.
From equations (74) and (49) the Lift coefficient of the right.

triangle wing with trdirtg edge normal to the free-stream
direction can be determined. It follo~s that

Since the aspect ratio A is given by the equation A= 200/f?,
equation (75) can be used to find the lift-curve sIope as a

function of A. In figure 16 a plot of (3’~ as a function of

&A k given.

‘L
,..,,/--...

.,’ . . .
, .- . . .

,
,.- . .

-.
,,’ -.

-.
,, ‘ -.

,.- -.
. .

FIGURE16.—1Tariationof reduced If&ewe sIope 6 ‘~ with reducedaspect ratio .6.4 for

plan forms of t?pe I.

Triangular pIan form, type 2.– Figure 12(b) shows the
symmetrical type of triangular plan form considered in this
section. The semivertex angle is & and 00is cleflned by the
reIation

0.=5 tan 30

The loading element. used in the previous section can be used
again and equations (61) and (62) are appficab~e directly.
Because of the symmetry of the figure, it is necessary mereIy
to insure the constancy of w,.O o~er the left half of the wing
in order that. the entire wing be a flat plate.

Summing the eIements over the type 2 triangular wing,
induced vertical velocity over the portion of the wing for
which — 1<~<0 is

or, sin;e C(8)=C(—6),

The function C’(O) in equation (76) must give a constan~

value for w(q)..a so that, dw..@v will vanish. Imposing
this condition it can be shown that a solution is given by
the reIation

(77)

and, aft er subst it utlon in equation (76),

The integration of equation (78) is to be performed under
the assumption that —&<q<O so that the region of
integration in the qI,6 plane for the doubIe integral is as
shown in figure 14. Reversing the order of integration in
the double integral, equation (7s) may be written in the
form

Evaluation of integrals of the form

is accomplished by means of the substitution

R
‘=&

After substitution, the integral becomes

and, by straight fovwmd integration
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This resuIt shows that the second double integral of equation
(79) vanishes (since dj>~t) as does also the siugIe integrai
in the equation. For the remaining double integral, however,
02<7,2 and

(80)

Introducing the moduIus 1=% ancl making the substitution

z=sn(u, k) =smu

one gets the expression

where the prime again refers to the complementary modulus

k’= 111–k’ of the complete elliptic integral. Since L =00

PC,
W..o=—– 77 E?

2-I 060 (81)

where k! z ~11— 1902
For the loading in question

PZ–Pz_@_ 2G—_. .
1 Y 1’{ >Io”’– r!?~ povoz .

so that, eliminating Cl between this equation and equation
(81),

Ap 4a0~2—.—
~ BJ002-02E’

(82)

Figure 17 shows the variation of ~ ‘$ with P tan 8 for values

of B tan & equal to 0.3, 0.6, and 0.9.
From equations (82) and (49) it is possible to fid the

expression for lift coefikient of a triangular or delta ~ving.

Thus:

Since aspect ratio of the wing is

A=?

lift COeffiCiOIli becomes

(83)

(84)

MO
}

!

4
/.

.’ ‘.
/4 ‘.

/’ ‘.
.’ ‘\

,’ ‘. \/’ 6 ‘\
/’ ‘\

‘_ #

,8 +on d’

FIGCRE17.—Loaddistribution ovm triangular I)Inn forms oftyIn2.

where the modulus_ of E’ is k’=
J

~_ A2/32
x- Tltis result

-—

(reference 8). In figure 1S a plot is given of @7$ as n

function of 13.4.
Triangular plan form, type 3.—Figure 12 (c) ShL)\VS the

plan form now to be considered. R&tive to the z axis or
free-stream direction the sides of the tritingle form the aIlglcs

& and 61so that the total vertex mlgle is 30+81= 2A, Tlir
variables 00and 61are aIso introduced satisfying the relatiom
60=6 tan 80, 61= p tan 81. The sarrm loading elenwnt. LIML
was used for type 1 and type 2? triangks may ,lw used and

equations (61 ) and (62) apply. It will then be necessary to
cletermine the clistribution of load so thtit tlw induced vertical
velocity over the plan form is a constant. Since this induced
<elocity must be, the same on both sides of the 8= O axis.

two equations resuIt:

For –l<v<O “

(s5)
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and for O<q<l

From the solutions to the.problems of type 1 a.ncltuype2 it k
possibIe to construct a solution of the more general problem
by expressing the loading function in the form

cl(?)= ,,
.4$+ B

y(e>+e)(e’—f3)
(87)

where.4 and B are constants that can be determined in terms
of w.=0 from equations (8.5) and (86). Equation (87), in
conjunction with equations (85) ancl (86), .yieIcIs the express-
ions

‘—[—AH1(h, o ,‘w.=o=~T70 e ) LBH@, e,)] (8S)

where

r&
E?*(O*, O(J=

dq,
(89)

. 1 ?I+(l-~12)(?h-@l) (%+%)

(

‘&
H,(e,, 80)=

dq, (90). 1 mzl’(l —VIZ) (Vi—%) (m+ Bol

TO THREE-DL%lENSION’.ALSUPERSONIC AIRFOIL PROBLEMS 583

The evacuation of H,(L%,60) and H,(6,, Q is. accomplished
in the same manner as has been used preciously: first, &
reduction of the quartic under the radiml to canonical form
and second, transformation by means of Jacobian elliptic
functions followed by direct integration. Since the calcu-
lations for both equations are quite similar, only in the case
of HI (@I,6.) mfi the details be mentioned.

a+bs
By means of the transformations q~= ~ ands =;, where

The introduction of the soyrnbok R and k defined as

b–a
R=

<(1–a2) (Oo–a)(@I+a)

1+ eob
k=—

e.+ b-

(91)

(92)

(93)

(9+)

(95)

The integrand chides naturaLIy into tw-oparts, one containing
even powers ancI one containing odd powers of t in the–riu-
merator. The Iat terpart integrates into elementary functions
after substituting t=uz and equation (95) thereby becomes

H,= a’Rk

setting

and substituting

Z=sn(’u, k)=snu

one gets

If sn y=~~ 12now- may be written as

where II (uJ-y) is the fundamental elliptic integraI of the
third ?iind.
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The evaluation of u (u, t) is best achieved by means of its
expression in terms of theta functions and zeta functions.
Thus

and the bracketed term in equation (88) is

e(K+iK’–7)e(K+7)+
II(K+-iK’, -f)–mm=;k @(K–y)e(K+iK’+7)

W’z(-y)

The theta functions are quasi-periodic,
the relations

e(u+2K)=e(u)

~ (K’–iu)
~(u+2iK’)=–eK

that is, they s~tisfy

e(u)

From this property, together with the fact that @(w) is an
even function, it follows that

e(K+iK’–7)e@Y+T) =e*
e(K–7)e@+iK’+y)

&loreover, since

Z(7) =~(Y) –7 g

there results

The expressionforequation (96)can now be wri~ten

‘l=a2Rkd=”{:[i-’1+M’[~’) -~a\-a2RkK-
(99)

where the moduli are k for the nonprimed functions and

k’= ~il – kz for the primed functions. By definition, y= arc

()
m ~= F ~, k where F is the incomplete elliptic integraI of

the first liind with argument $ and moduIus k.

In the same notation, the equation for HZ is as follows:

kRb
‘2= b2k2_ ~

{
— (z2(1-kz)K’- (l-ti2)E’—a(k2)2)

J=[K

~(’)-”%+twm
(loo)

FormuIas (99) and (100) can now be combined with equa-
tions (79) to give

and
r 2GA=–+ (00–oJ —’90+9,

(101)

1 \ I I I I I I
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FIGGRE19,—Load distribution over triangular Dlan forms of type 3.

where

and E’ is the complete elliptic integral of the

with modulus ~il —G2.
From equations (87), (101), and (102)

(a}/5iau6,-0.3.

(103)

second kind

d [—x57 (eo–el) 6+2eoo1‘i% 1
— ..- —...—.-—
80+ 6, ~l(t?,+ d) (0,–8)

(104)

It should be remarked that the slope of the loading curve
is zero at 9=0. Figures 19 (a), 19 (b), and 19 (c) show the

0.3, 0.6, and 0.9, respectively, and for @ kn ~o equal to O,

0.3,0.6,and 0.9.

\
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FIGCEE19.—Continued. (b) B tan b’t= 0.6.

From equations (49) and (104) the lift coeffieieut. for a
type 3 pkm form is obtainable. Two cases will be developed
here: first, when the trailing edge of the wing is perpendicuIa.r
to the stream direction; second, when the trailing edge of
the wing is perpendicular to the line of s.yrnmetry. The
first configuration may be referred to as a.skewed King while
the second configuration may be referred to as a symmetrical
delta wing at an angle of sideslip. Thus for a skewed wing

/cL=fi ~ (@o+h)ZG (105)

where G is given by equation (103) and E’ has the moduIus
~:1– (T. This resuIt agrees with that given by R. C!.
Roberts in an abstract in reference 13.

For the more practical case of the delta wing at an angIe
of sideslip, figure 12 (c), the Lift coefficient can be expressed as

(106)
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FIGCEE19.—Concludwl. (c) B km &=0.g. e

where 1 is the angle of sicleslip and 2A the a@e between the
leading edges, and G is expressed in terms of O, and 0, which
are, in turn, expressed in terms of A find A by the following
equations

60=L3tan (A+A)

@,=@ tan (A–A) }
(107)

Since the pressure distribution has been computed only for
wings with leading edges behind the 3fwh cone springing
from the apex and with a trafig edge ahead Of the ~fach __
cones from the -iving tips, formula (106) is vaLid only for
cases -ivhere

p+ L<90°

A+L<,u

}

(108)

A–A>O

These restrictions are practically always met, however, for
angles of sideslip Iikely to be encountered in flight.
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dCL .
Equation (106) is plotted in figure 20 where P ~ IS

shown as a function of sidesIip and A. Thu figure shuws

tha~ up to 15° of sidcslip @ ‘~ remains practically constanl,

ikhIEs~ERONAUTICAL LABORATORY,
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